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An analysis of the rate of convergence is made for the interpolation series based
on the biorthogonal system (~)f(O) and en(z) = L1nx' Iz-1 , which was recently
shown to be convergent for certain entire functions of exponential type. An error
bound is obtained which is shown to vary as a negative power of the number of
terms in the partial sum. Comparison is made with numerical calculations in a
few simple cases and certain practical applications are mentioned.

Let fez) = 2:.:=0 anzn/n! be entire and of exponential type, and let
F(w) = 2:.:=0 an/wn+l. Let D(f) be the set consisting of the singular points
of F(w) and the points exterior to the domain of F. The following result on
the expansion of analytic functions has recently been established [3] using
the method of kernel expansion in the P6lya representation as expounded,
for example, in Buck [2] or Boas and Buck [1].

THEOREM 1. If D(f) lies in the strip I Im(w) I < Tr/2, then fez) admits the
convergent exponential interpolation series expansion

00 Ll
fez) = n~o en(z) ( n ) f(O),

for all z, where en(z) is the exponential polynomial

en(z) = Llnx· 1"'-1 = f (-l)k (Z) (n + 1 - k)'.
k~O

(I)

(Several of the en(z) are: eo(z) = 1, e1(z) = 2' - 1, e2(z) = 3' - 2 . 2' + 1,....)
In the present paper we shall give the results of an error analysis of the

approximation obtained by using the first n terms of the expansion (I).
The error bound which we obtain varies as a negative power of n and is
related to the set D(f) defined above.
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(2)

It should perhaps be pointed out here that the linear functionals (~) f (0)
and the exponential polynomials en(z) form a biorthogonal system and,
hence, for any function/and any m = 0,1,2,3,... , we have

m+l Ll
f(m) = L en(m) ( n ) f(O).

n~O

Our error bound is thus not required for z equal to a positive integer or zero.
The P61ya representation mentioned above may be stated as follows:

If fez) = L:~o anzn/n! is entire and of exponential type, then

fez) = (271'0-1 t eZWF(w) dw,

where r encircles D(f). If the kernel expansion eZW = L: Un(z) gn(w) holds
uniformly for all w on a simple contour r which encircles D(!) and for
all z, we may integrate termwise in (2) and obtain fez) = L; Tn(f) Un(z),
for all z, where

In order to obtain the expansion of Theorem 1, we first expand fez) = zY,
Y any complex number, -71'/2 < arg z < 7T/2, into a Newton series and
obtain

00 (Z-l)
zY = L en(y) n '

o
(3)

uniformly in any bounded region of the half plane Re(z)?: € > 0, for
arbitrary y. Setting z -+ eW

, y -+ z in (3), we obtain the kernel expansion

(4)

uniformly in any bounded region in the strip [lm(w)j ~ () < 71'/2. Termwise
integration now yields Theorem 1. The details may be found in [3].

Since our primary concern here is with the rate of convergence, we write (3)
in the form

n (Z 1)zY = L ek(Y) ~ + rn(z).
k=O

(5)

Norland [4] gives the following estimate for the remainder in Newton series
expansions. If fez) is holomorphic in the half plane Re(z)?: et and
satisfies in that halfplane the inequality If(et + re i9)j < CerlOg2 (1 + r)S+drl,
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-Tr/2 ~ B ~ Tr/2, where fer) -.. 0 as r -.. 00, then the remainder rn(z) after n
terms of the Newton series satisfies the inequality

I rn I ~ c1nB+<+!-a + c2n~-a(log n)8+<+t-~ + c3n~-a(l + log n)8+2-~-<,

where a = Re(z) and n is sufficiently large. For fez) = z" we have IX arbitrarily
small and positive and a straightforward calculation shows that we may
assign an arbitrary negative value to f3. Ifwe take f3 = -3, then it is possible
to show that I rn I ~ CnCY.-a. Here and below C will represent an unknown
constant which is not necessarily the same at each occurrence. We now
introduce the transformation z = eW in (5) to obtain

where now I rn I < Cn~-a, a = Re eW
• If we let w = s + it we have

I rn I < Cn~-e8cos t.

We now change y -.. z in (6) and substitute into (2) to obtain

(6)

(7)

where Rn(z) = (2TrO-1 frrn(z)F(w) dw. We have thus proved the following
theorem, in which r encircles D(f) and w = s + it.

THEOREM 2. If fez) is entire and of exponential type and if D(f) lies in
the strip I Im(w) < Tr/21, then fez) = L=~o ek(z)(~)f(O) + Rn(z), where
I Rn(z)1 < C I fr n~-e'costF(w)dw I.

By considering bounds on the quantities in the integral of Theorem 2, we
obtain the following useful result.

COROLLARY. In Theorem 2, the remainder satisfies the inequality

where S= inf{s: s + it E D(f)}, T = sup{t: s + it E D(f)}.

We now illustrate the above result by considering fez) = z, in which case
F(w) = l/w2 and D(f) = {OJ. We have for the coefficients of the en(z) in (1),

(~) f(O) = (I/n!) L1(L1 - 1) ... (L1 - n + 1) z Iz~o

_ jO for n = 0,
- I(_1)n+l/n for 11 ~ 1.
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This gives the exponential interpolation series

(8)

which, according to Theorem 1, holds for all z. By the corollary to Theorem 2
with S = T = 0, we see that the error, after a sufficiently large number of
terms of (8), satisfies the bound

(9)

where ex is arbitrarily small and positive.
Pitts [5] has computed Rn , for the expansion in (8), to 16D for several

values of z, obtaining meaningful results to about n = 40. A comparison
between the calculated I Rn I and the theoretical bound in (9) is provided
by looking at n I R n I where, for simplicity, we have set ex = O. For z = !
and n = 10, 20, 30, 40 we obtain n I R n I = 0.049, 0.036, 0.030, 0.027, respec
tively.

In order to illustrate the accelerated rate of convergence, indicated by the
corollary, when one has a positive value for S = inf{s: s + it E D(fn, we
may consider the following example:

n (e 1)f(z) = eZ = L ~ eiz).
n=O

(10)

We now have D(f) = {I} and by the corollary must have I Rn I < Cn~-e.

Comparison with the computed results for z =~, gives, for n = 1,2,3,4,
and 5, the values ne I R n I = 0.65,0.37,0.061,0.031, and 0.019, respectively.

A direct comparison of actual errors shows that for z = t the error in (10)
for eZ is 0.0003 after five terms, whereas, in (8) for f(z) = z the error is
0.0007 after 40 terms.

It is interesting to note that en ( -1) may be evaluated in closed form.
We have en(-1) = L1n(1jk)lk~l = (_l)nj(n + 1). Using f(z) = z again, we
have

00 n

-1 = L «-l)n+ljn) en(-1) = - L Ijk(k + 1) + Rn ,
k=l k=l

with I Rn I = L.~=n+l Ijk(k + 1) = Ij(n + 1), in complete agreement with
the analytical bound (9) given by the corollary.

Apart from the theoretical interest in the existence of a nonpolynornial
interpolation scheme with the linear functionals being simple difference
operators, there is also a rather important practical advantage in certain
applications. Consider a simple problem where it is desired to fit an analytic
expression to discrete data points and assume that the data are equally
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spaced and that the function being fitted is known to grow at least as fast
as, say, eX. Then it is well known that such a function cannot in general be
expressed as a convergent Newton series without resorting to the device of
shifting the conjugate indicator diagram to the left by multiplying the func
tion by e-CZ (see [I, p. 35]). The exponential series of the present paper can
be used, however, and in fact by a simple difference table method which we
illustrate below. Even if one wishes to utilize only a few data points and
obtain an approximating Newton polynomial, the result is quite inferior
to using the initial terms of the exponential series of Theorem I.

We illustrate by tabulatingf(x) = e'" at x = 0, 1,2, and 3 and calculating
the coefficients for both Newton and exponential interpolation. An examina
tion of the functionals (~) f (0) shows that they can be evaluated by an
appropriate extension of the usual difference table, as indicated below.

x f(x)

0 1.000(N, E)
I 2.718 1.718(N) 1.718(E)
2 7.389 4.671 2.953(N) 2.953 1.235 1.235(E)
3 20.086 12.697 8.026 5.073(N) 2.210 0.885 -0.350(E)

The Newton coefficients (N) are 1.000, 1.718, 2.953, and 5.073 and the
exponential series coefficients (E) are 1.000, 1.718, 1.235, -0.350, yielding
the following interpolating functions:

(Newton) eX '" 1.000 + 1.718x + 1.477x(x - I)

+ 0.845x(x - I)(x - 2),

(Exponential) eX '" 1.000 + 1.718(2'" - I) + 0.618(3'" - 20:+1 + I)

- 0.058(4'" - 3"'+1 + 3 . 2'" - 1).

Each of these interpolating expressions agrees with the given data at x = 0, I,
2, and 3 to within 0.001. At x = 0.500, 1.500, 2.500, points midway between
the given data, the situation is quite different, however, with the exponential
interpolating function giving errors of 0.001, 0.003, and 0.022, respectively,
whereas, the Newton polynomial gives errors of 0.155, -0.114, and 0.222,
respectively. It thus appears that both theory and numerical comparison
indicate the utility of the exponential interpolation series.
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